Geometry Benchmark #2 Study Guide

- 1. If AB + BC = 30 and AB = 12, what property of equality justifies the conclusion that BC = 18?
- 2. Which theorem or postulate guarantees that $\angle 1 + \angle 2 = 180^{\circ}$ in the figure?

3. Complete the following proof.

Given: $\overline{AB} \cong \overline{AC}$, $\overline{BD} \cong \overline{DC}$

Prove: $\angle BAD = \angle CAD$

Statement

Reason

85 POLOS (45 POL		
1. ĀB ≅ ĀC	1.	
2. BD≅DC	2.	
3.	Reflexive Property	
4. AADB≅AADC	4.	
5. ∠BAD = ∠CAD	5.	

4. What theorem or postulate can be used to prove $\triangle ABD \stackrel{\sim}{=} \triangle CBD$?

5. Find x.

$$\langle A B C \rangle$$

$$AB = x - 3$$

 $BC = 3x + 8$
 $AC = 2x + 11$

$$Ac = 2x + 11$$

6. What can be stated WITHOUT proof?

7. In the figure, PQ = QR = RS, and PS = 30. Find PR.

8. What additional information is needed to prove that $\triangle GHM \cong \triangle KHM$?

10. Given that \overline{AB} // \overline{DE} , what angles can you prove congruent?

11. Complete the proof.

Statement	Reason
∠CAB ≃LFOE	Given
AB = OF	Given
LABC = LOEF	All right 1's are =
AABC = DOEF	V

12. The figure below shows triangle ABC with altitude AD drawn to base BC. What statements can you make from that information?

13. The following figure is a square. Which triangle congruence theorem can be used to prove $\triangle RSU \cong \triangle TSU$?

14. In the following diagram, \triangle ABC \cong \triangle DFE. What is the value of x?

- 15. If $\triangle ABC \cong \triangle ACB$ and $m \angle B = (x + 5)$ and $m \angle C = (2x 10)$. Solve for x.
- 16. Which triangle congruence theorem applies only to right triangles?
- 17. Solve for x.

△ PRQ = ASQR

DMNO = DPQR

19. Find the value of x.

20. List all pairs of congruent angles.

